A Counterexample to a Conjecture of Erdös, Graham and Spencer

نویسنده

  • Song Guo
چکیده

It is conjectured by Erdős, Graham and Spencer that if 1 ≤ a1 ≤ a2 ≤ · · · ≤ as with ∑s i=1 1/ai < n − 1/30, then this sum can be decomposed into n parts so that all partial sums are ≤ 1. In this note we propose a counterexample which gives a negative answer to this conjecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a conjecture of Erdös, Graham and Spencer, II

It is conjectured by Erdős, Graham and Spencer that if 1 ≤ a1 ≤ a2 ≤ · · · ≤ as are integers with ∑s i=1 1/ai < n − 1/30, then this sum can be decomposed into n parts so that all partial sums are ≤ 1. This is not true for ∑s i=1 1/ai = n − 1/30 as shown by a1 = · · · = an−2 = 1, an−1 = 2, an = an+1 = 3, an+2 = · · · = an+5 = 5. In 1997 Sandor proved that Erdős–Graham–Spencer conjecture is true ...

متن کامل

Partial proof of Graham Higman's conjecture related to coset diagrams

Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

The Graham Conjecture Implies the Erdös-turán Conjecture

Erdös and Turán once conjectured that any set A ⊂ N with

متن کامل

On a Diophantine Equation Related to a Conjecture of Erdös and Graham

A particular case of a conjecture of Erdös and Graham, which concerns the number of integer points on a family of quartic curves, is investigated. An absolute bound for the number of such integer points is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008